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When fluid in an annulus between two cylinders is set in motion by whirling 
movements of one or both of the cylinders, dynamic forces are imposed by the 
fluid on the cylinders. Knowledge of these forces is frequently important, indeed 
often critical, to the engineer designing rotor systems or journal bearings. Quite 
general solutions of the Navier-Stokes equations are presented for this problem 
and are limited only by restrictions on the amplitude of the whirl motion. From 
these solutions, the forces are derived under a wide variety of circumstances, 
including large and small annular widths, high and low Reynolds numbers and 
with and without a mean flow created by additional net rotation of one or both 
of the cylinders. 

1. Introduction 
The flow in an annulus between rotating cylinders must rank high on any list 

of the most extensively studied flows. Viscometric and hydrodynamic stability 
aspects of the flow between coaxial cylinders have been studied in depth. Lubrica- 
tion analyses based on the generalized Reynolds equation have been widely used 
for the study of journal bearings where the annular gap is small. Thus the engineer 
faced with a design problem involving journal bearings or rotor shafts surrounded 
by a fluid annulus can make accurate predictions of the nature of the fluid flow 
and the steady-state forces involved in his design. But often knowledge of the 
dynamic stability of the system is of comparable importance; accurate prediction, 
for example, of the whirling speeds of the inner cylinder or rotor is often a primary 
concern. Considering the wealth of material on annular flow, it is somewhat sur- 
prising to find a comparative paucity of information on the nature of the flow and 
forces in an annulus between coaxial cylinders when either or both are performing 
whirling motions; that is to say the position of the cylinder axes in a cross- 
sectional plane moves in a circle around some mean position or axis as indicated 
in figure 1. It is clear that accurate prediction of the structural dynamics not only 
of the inner cylinder (termed the ‘rotor’ for convenience, even though in one 
problem studied i t  does not actually rotate) but also of the outer cylinder or 
‘stator’ requires knowledge of the unsteady forces imposed by the fluid on these 
components owing to the whirling motion. In  general these forces will comprise 
a force in the instantaneous direction of whirl deflexion OC, which is often 
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FIGURE I .  Schematic diagram illustrating rotor whirl and general rotation. 
For simplicity stator whirl motion is not shown in the figure. 

equivalent to an ‘added mass ’, and a viscous drag or lubrication force normal to 
that direction. 

One area in which the dynamic aspects of these flows has been extensively 
studied is in the field of journal-bearing lubrication (e.g. Sternlicht 1965). Almost 
exclusively such analyses are based on the generalized Reynolds equation (e.g. 
Tipei 1962) and are therefore restricted to situations in which the annular gap 
width is very small. Furthermore the Reynolds number is generally small and 
fluid inertial effects are usually neglected. Recently, however, there has been 
some interest in inertial effects; Milne (1965), for example, used modifications of 
the Reynolds equation in order to evaluate second-order inertial effects a t  low 
Reynolds numbers. Fritz (1970) has also used lubrication equations in an attempt 
to estimate dynamic forces at high Reynolds numbers. But it appears that the 
dynamics of the flow for larger gap widths and the validity of the lubrication 
theories in the various asymptotic limits of high and low Reynolds numbers and 
small gap widths are largely unknown. 

The particular technological problem which originally motivated this study is 
worth describing. Designs for liquid-sodium pumps in the cooling system of pro- 
posed nuclear generating plants have the pump buried in the core while its prime 
mover is outside of the radioactive shielding. In  some candidate designs the long 
rotor connecting them is housed in a cylindrical casing; this is, in turn, surrounded 
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by the pump housing and liquid sodium fills both annuli. Thus, if the rotor 
performs whirling motions (called for convenience ‘whirl with rotation’) forces 
transmitted by the fluid in the inner annulus would cause the intermediate 
cylinder or casing to deflect structurally and thus perform whirl motions without 
any net rotation. The problem in the inner annulus is thus one of ‘whirl with 
rotation’ while that in the outer annulus is one of ‘whirl without rotation’. The 
forces transmitted in both annuli must be known before the basic rotor dynamics 
can be analysed since the fluid force on the rotor is a function of the whirl deflexion 
of the intermediate casing, which is in turn a function of the forces imparted by 
the fluid motions in the outer annulus. Furthermore neither annulus is small com- 
pared with the radial dimensions and hence a lubrication theory would be of 
dubious validity. 

The objective of the present paper is to evaluate the fluid motions and forces 
for a variety of situations by starting with flow solutions of the Navier-Stokes 
equations. Though fluid motion in the axial direction can be a significant feature, 
particularly in journal-bearing lubrication (e.g. Sternlicht 1965)) i t  will be 
assumed zero throughout this paper; the extension of the present analysis to 
include axial velocities is very complex algebraically. Furthermore the solutions 
are all restricted to whirl amplitudes which are very small compared with the 
other dimensions; such is the case in the problem mentioned above, where ampli- 
tudes of thousandths of an inch are of interest for radial dimensions of the order 
of inches or feet. 

The frequency of the whirl motion is denoted by w. In  addition the cylinders 
may also be rotating about their own axes. For the most part we shall treat in 
detail only the common situation in which the rotor has some mean angular 
velocity a, where in general i2 + w .  The case of whirl without, rotation is thus 
Q = 0 while that of conventional or synchronous whirl with rotation is i2 = w .  
There do however exist other forms of whirl with rotation such as half-frequency 
whirl for which s2 $. w. Furthermore conventional steady-state operation of 
a journal bearing also fits into this parametric system when w = 0, i2 =I= 0. Thus 
we perform a general analysis for independent w and Q. The solutions are, how- 
ever, formulated only for whirl amplitudes and frequencies which are independent 
of time. In  this sense they are analogous to the steady-whirl solutions of lubrica- 
tion theory (Sternlicht 1965). 

As indicated in figure 1, the notation used throughout will be as follows: 
a and b refer to the radii of the inner and outer cylinders and p, ,LA and v are 
respectively the density and dynamic and kinematic viscosities of the liquid, 
which is assumed incompressible. Polar co-ordinates (r,  0) with origin a t  the 
position of the mean axis are used; z = reie denotes vector position, t is time and 
(q., ve) are the fluid velocities in the (r,  0) directions. The position of the axis of 
the inner cylinder is then denoted by zcl, where 

ZCl = d, eiwt, d, < a, b, (1) 
where d, is the whirl amplitude. For generality we also describe the deflexion of 
the outer cylinder (if any) by the position of its axis 

zc2 = d 2 eitwt++), d2 < a, b, (2) 
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FIGURE 2. Diagram illustrating the component motions of the rotor surface 
and the derivation of the boundary conditions. 

where $ is some phase angle, determined from structural as well as hydrodynamic 
considerations. A whirl amplitude d, could arise, for example, from the structural 
response of the outer cylinder to the forces transmitted through the fluid. 

The fluid motions in the annulus are divided into steady components (if any), 
denoted by ($, v$), and oscillatory components (vi, vi), which are induced by 
the whirl. 

2. Boundary conditions 
It is convenient to develop general boundary conditions relating the fluid 

velocities (q., ?,&,a, b to the motions of the inner and outer cylinder. It will be 
assumed that the mean or time-averaged flow in the annulus is of the form 

?J: = 0, v: = V(r) ,  (3) 

(?$)a = 0, (?$)b = 0. (4) 

which is in accord with zero normal velocity on the cylinder surfaces: 

For convenience, the azimuthal fluid velocities at the inner and outer cylinder 
surfaces will be denoted by V, and V, respectively, so that V(a)  E V, and V(b)  E V,. 

The above may be envisaged as the O( 1) terms in a series solution in ascending 
powers of d, and a,; then the boundary conditions on the oscillatory velocities are 
clearly O(d,, d,). The boundary condition on the rotor is developed with the aid 
of figure 2. The velocity of a general material point A on the surface of the rotor 
is given by superposition of the rotational velocity !2a about the rotor centre C 
and the instantaneous velocity of that centre from the relation (1). Thus the 
velocities normal and tangential to the instantaneous surface at A are v, and v,, 
where 

( 5 )  

(6) 

(v,Ja = wd,sin (8'- w t ) ,  

= SZa + wd, cos (8" - wt) .  
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In  a viscous flow solution the no-slip conditions require that the fluid velocities 
at A are identical with ( 5 )  and (6). On the other hand, an inviscid analysis requires 
only ( 5 )  and ( v , ) ~  must be considered arbitrary. We shall attempt to treat both 
cases simultaneously. 

The angle between the polar line OA and the radius CA is Ad*, where 
aA8* = -d,sin(8*-wt)+O(d!). It follows from ( 5 )  and (6) that the radial and 
azimuthal fluid velocities at A are 

( v , ) ~  = (w - ( v , ) ~ )  d, sin (8" - w t )  + O(d:), 
(vs)a = QCZ + wd, cos (8* - wt)  + O(d:). 

In  the viscous solution ( v , ) ~  in (7)  can be replaced by Qa; in the inviscid case only 
the first relation applies and ( v , ) ~  must be set equal to the mean tangential fluid 
velocity V,. But the point A has polar co-ordinates r = a + d, cos (8* - wt) ,  
8 = 8* - dl sin (8* - &)/a and thus by a Taylor series expansion 

Such an expansion is necessary because a t  least one of the derivatives is O( 1) in 
general, namely av,/ar. The boundary conditions are then obtained in a con- 
venient form (i.e. all quantities evaluated a t  r = a )  by eliminating ( v , ) ~  and 
(Ve)a among (7)-(10) and employing the mean flow (3) to evaluate the O(d,) terms 
arising from the derivatives. The O(1) terms merely confirm the mean flow 
boundary conditions. Neglecting terms O(d!) results in the following boundary 
conditions on the oscillatory velocities: 

d,sin(O-wt) = R e  

(v;),=, = (w - (F) av ) d, cos (8 - wt )  = Re [ (w - (g),=j d, ei(@-@t)]. (12) 
?=a 

In  the inviscid solution only the first is applicable and V, is not necessarily equal 
to Qa; in the viscous solution both must be used and V ,  = Qa. Boundary condi- 
tions on the stator are obtained in precisely the same way and analogous 
comments apply: 

(v:),=, = Re [ - i (w  - &/b) d,ei(e-ot-+)], 

(v;),=, = Re [{o - ( a  V/aT),=,) dzei(e--ot-+)]. 
(13) 

(14) 

3. Equations of fluid motion 
We shall now lay the general foundations for the particular fluid-mechanical 

solutions of later sections. Assuming an incompressible Newtonian liquid and 
defining a stream function $ and a vorticity [ in the conventional manner such 
that 

V ,  = r-l a$/ae, vg = - a ~ / a r ,  6 = - V2$, (15) 
I2 F L M  75 
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the Navier-Stokes equations require that 

where v is t'he kinematic viscosity of the liquid. The solution for a mean flow 
(w:, w!, Co) of the form (3) is simply 

w; = 0, 6 0  = (bV,-aK)/(bZ-a2), (17) 

ab(bK-aG)I bG-aV, E 
( b 2 - U Z )  r ba-uz T 

v: = V ( r )  = -+ r = -+Fr,  say. 

Of course, for the case of swirl without rotation there is no such mean flow and 
V ,  = V,  = 0. For stable laminar flow in the case where the rotor speed is !2 and 
the stator does not rotate V ,  = af2 and V,  = 0. At high Reynolds numbers, where 
in the mean the flow may consist of a core flow bounded by thin boundary Iayers 
on both cylinder surfaces, V, and V ,  may be envisaged as the mean fluid velocities 
at the boundaries of the core. In  a purely inviscid flow, of course, the term O(r)  
in (18) must be zero and bT$ = uV,. Now when the O(d2) terms are neglected the 
equation governing the oscillatory vorticity C1 is 

where w! is given by (I 8). 

4. General solution 
Define a modified radial variable 7 and a complex constant p as 

7 = [ i (w-F)/v]+r,  ,8 = [I +iE/v]*, (20) 

where the roots with a positive real part are implied in both cases. Then the 
appropriate general solution of (1 9) is 

c1 = Re [{i(w - F)/v}* ZB(7) ei(e-ot)], (21) 

where, as is common practice, ZB(l;l) denotes the linear combination of Bessel 
functions AJB(q) + BYB(?), where A and B are arbitrary constants to be deter- 
mined. It is interesting to note that the potential-vortex component of the mean 
annular flow affects only the argument of the Bessel functions while the solid- 
body-rotation component affects only the order of the Bessel functions. 

When (21) is integrated the general solution for the velocity components can 
be written as 
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where qa, y b  are respectively the values of q at r = a, b. These contain four con- 
stants, which must be determined from the boundary conditions by comparing 
(22) and (23) with (11)-(14). Thus 

where qa, qb are the values of 7 a t  r = a, b respectively and 

Also C = Ed,, D = - ( W - F ) d l .  (27) 

It is instructive, indeed necessary, to pause here and consider how this general 
solution behaves at large Reynolds numbers assuming, for the moment, that the 
mean flow remains stable and laminar. Using the generalized Debye asymptotic 
values for Bessel functions in which both the order and argument tend to large 
values one finds by evaluating A ,  B and S and substituting into ( 2 2 )  that for 
large /3 

v: --f Re [i{C*]r2 + D*} ei(8-ut)], (28) 

where C" =Ed,-,--- a2b2 { w - F - g} (dl - d, e+), 

D" = - ( w - F ) d l + -  b2 ( w - ~ - g }  (dl-d2e-i+), 

(b  -a2) 

( b2 - a2) 

and this is precisely the inviscid result that would be obtained if the radial velo- 
city conditions (1 1) and (1  3) were alone applied to a general inviscid solution of 
the form (22) and (23) with A = B = 0. On the other hand the same limiting 
process applied to wt yields 

where 

This is identical to the inviscid result mentioned above except for the term 
involving H(r) .  In  the interior of the flow (a < r < b) it is clear that H(r)  -+O when 
the Reynoldsnumber becomes large and hence 1/31 -+ + co. But when r = a or r = b, 
i.e. exactly on the boundaries, the proper asymptotic limit is 

{ ( w - P ) a 2 - E )  for r = b, IpI-++co, (33) 

(34) H+{ {(w-P)b2-EE) for r = a ,  l,8l-++co, 

and with these values for H the azimuthal velocity conditions (12) and (14) are 
satisfied exactly (as well as the radial velocity conditions). On the other hand the 
azimuthal velocity conditions are not satisfied by the inviscid solution where one 
takes H = 0 throughout and then finds VJ a t  r = a, b. It must be clear that the 

12-2 
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physical interpretation of these results is that a boundary layer forms on each 
surface with a predominantly inviscid perturbation flow in the core between the 
boundary layers. The inviscid solution with H = 0 is the velocity distribution in 
the core and the values for vt obtained with H = 0 at r = a, b approximate the 
velocities on the core/boundary-layer interfaces. On the other hand the H ( r )  
contributions to wi represent the velocity 'defects ' within the boundary layers 
and the values of these defects are such that the no-slip conditions are satisfied 
at the material surfaces. Representative thicknesses 8, and 13, for the boundary 
layers are readily obtained by noting the points in the flow r = a+S, and 
r = b - S,, a t  which the defects are one-half of the defects at the walls, i.e. 

8, = a[2(4~)*- 11,  8, = b[1- 2 + / ~ ) f ] .  (35) 

There is however a difficulty in this limit process. Note that the solution for 
large involves asymptotically large values of av;/ar near the boundaries and 
yet this derivative is used in the Taylor series expansion (10) from which the 
boundary conditions on wi were derived. Since the latter series must converge we 
can estimate that the analysis is only valid if the Reynolds number Be,, like 
dlE/av, is significantly less than unity. That is to say the Reynolds number Re 
based on the whirl amplitude and a typical mean fluid velocity must be small even 
though the overall Reynolds number based on the dimension a or b can be very 
large. 

5. Pressure, stresses and forces 

solution ( 2 2 )  and ( 2 3 )  can be obtained from the basic equations of motion as 
The oscillatory component p1 of the pressure corresponding to the general 

Also, if the functions T,(r) and T2(r) are such that the oscillatory stresses (radial 
normal C T ~  and tangential ai0) in the liquid are denoted by 

then it transpires that 

T*(r) = x ( r ) - i T 2 ( r )  = - r v i  

It will be seen that the evaluation of the total forces on the rotor or stator 
requires the evaluation of T*(a) and T*(b), where the overbar denotes the com- 
plex conjugate. It follows by substitution for c1 that 
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where A and B are evaluated from (24) and (25). In  order to evaluate the stresses 
on the rotor and stator surfaces it is necessary to proceed with care along lines 
similar to those used in developing the boundary conditions a t  the solid surfaces. 
First note that to O(d)  the stresses unn and ans, respectively normal to and 
tangential to the solid surface at point A (figure 2), are given by 

a,, = uv + 2d1a-1ur0 sin (8* - wt) ,  (40) 

(41) = ere - d,&( uv - uee)  sin (8* - wt)  . 
Since U & - O $ ~  = 0 the only additional O(d)  term is that in the first equation. 
Furthermore the a, and urrs terms on the right-hand side must be evaluated a t  
the point A ,  whose co-ordinates are 

r = a+d,cos(O*-wt), 8 = O*-d,sin(O*-wt)/a. 

Finally, integrating unn and urn over the circumference of the rotor and pro- 
ceeding along similar lines for the stator one obtains the forces on the rotor (F,) 
and on the stator (F,)  per unit axial length as 

where the overbar denotes the complex conjugate, and 
- 

F,  = - nbp[T*(b) - V$d,/b] eibt++). (43) 

Thus (42) and (43) along with (39) represent the principal results of practical 
importance to the design engineer. It is convenient to define non-dimensional 
force coefficients f, and f2, which are useful in the presentation and discussion of 
results : 

These represent the forces on the inner and outer cylinders per unit deflexion of 
the inner cylinder divided by npa2w2. The real parts of fl and f2 represent the 
forces in the direction of the rotor displacement and can be interpreted as added- 
mass effects. Indeed the added mass N, of the inner cylinder per unit axial length 
is simply N, = p a 2  Re ( fi). Note that since the added mass per unit length of 
a cylinder starting from rest in an infinite domain of fluid is npa2 the factor fl 
represents the added mass relative to this classic result. 

The imaginary part of fl (or f2) represents the force perpendicular to the direc- 
tion of displacement of the rotor and in the local instantaneous direction of whirl 
rotation. Thus a negative imaginary part of f, represents a viscous drag or 
damping of the whirl motions of the rotor. The orientation of this force coefficient 
fl on the rotor is also indicated diagrammatically in figure 3. 

fi = Fl/npa2w2dleiWt, f, = F2/npa2w2dleiat. (44) 

6. Whirl without rotation 
When there is no mean rotation of either cylinder, so that there is no mean 

flow, the analysis is considerably simplified since p = 1 .  As mentioned and illu- 
strated in the introduction this is termed whirl without rotation. The induced 
forces, though more readily obtained by setting the mean flow equal to zero prior 
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FIGURE 3. Diagram indicating the components of the force coefficient fi on the rotor. 

to the analysis, can also be deduced from (42) and (43) by setting E = F = 0. 
If y denotes the ratio of the radii, y = b/a,’ then one obtains 

F, = mpa20P[ - d, + G(d, - d,ei#)] eiwt, 

F, = - mpb2w2[ - d2e@ + cy-2(d, - d2ei#)] eiwt, 

(45) 

(46) 

with (47) 

where the osciIlatory Reynolds number R is defined as w 2 / v  and 

%?& = Jm{(iR)*} Y,{y(iRP) - J,{Y(iR)+} X n { ( W } .  (48) 

Particular calculations were made only for the case d2 = 0, in which the outer 
cylinder does not deflect (extension of the results to non-zero values of d, is 
straightforward). Then the force coefficients are simply given by 

f, = - l + G ,  f, = -G. 

Before discussing the values of 8, f, andf, computed from (47) and (48) as func- 
tions of y and R and presented in figures 3 and 4, it  is instructive to examine the 
various asymptotic limits of C. 

Consider first the case of large Reynolds number, R 9 1. Hankel’s asymptotic 
expansions for Bessel functions with large arguments leads to 

G-t- 2y2(iR)8sin{6(iR)~}/[4yg- (y -t l)G(iR)t sin {G(iR)4)] (49) 
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provided that PR $1, 6 being the non-dimensional gap width, 6 = y-  1. Thus 
when R -+ co, the limiting value is simply 

G-t2y2 / ( y2 -  1), R $ 1, 62R $ 1. (50 )  

It can be readily confirmed that an inviscid analysis of whirl without rotation 
yields precisely this result. To determine the manner in which the drag force (or 
imaginary part of G) tends to zero for large R i t  is necessary to evaluate the 
second-order term in the expansion of (49). When the gap width is small, so that 
6 < 1 (but still PR  $ 1), we may return to the original general form for G and 
exDand to obtain 

Note especially that the drag force may become comparable with the added-mass 
term if 6 and R are such that R $ 1, 62R $ 1 but t14R < 1. 

1). Then the 
leading term, which contrasts with (50) and (51), is 

A different limiting value is however obtained if a2R < 1 (R 

G+i[- 12/a3R], R $ I, 6 < 1, a2R < 1 (52) 

and hence a large drag force dominates since a3R is always large compared with 
unity under these conditions. 

The asymptotic limit at low Reynolds numbers (R  << 1) is more difficult to 
obtain and requires expansion of the Bessel functions up to five terms. The 
leading two terms, of order R-l and Ro, are 

- 4i(y2+ 1) 
= - R{(y2 + 1) In y - (y2 - l)} 

Hence the dominant terms are a drag force which behaves like R-1 and an added- 
mass term which is independent of R. Furthermore, when the gap width is small 
(6 < 1, R < 1) the limit of (49) becomes 

G+-12i/S3R+6/56, R <  1, 6 <  1. (54) 

Remarkably the drag force limit of magnitude 12/63R is identical to that of (52) 
for 6 < 1, R 9 1 but 62R < 1; hence i t  appears that this limiting value is valid 
for all R provided that S2R < 1. Of course, when a2R $ 1 equation (51) becomes 
the proper limit. In  addition the added-mass term only differs from that for 
R $ 1 by t,he factor 1.2. 

The general function G, from which fi and f 2  may be easily obtained, was com- 
puted numerically from the definition (47) for various values of the ratio of the 
radii y and oscillatory Reynolds number R. Results are presented in figures 4 and 
5 for Re (G - 1) = Refl = Re ( - 1 - f 2 )  and for Im G = - Imfl = Imf2 for 
y = 1.01, 1.1 and 2-0. The values are plotted against a modified Reynolds 
number R* = (y - 1) R = wa(b - a) / v  for convenience. Also shown in these figures 
are the low Reynolds number asymptotic limits given by (53) for both the real 
and imaginary parts and the high Reynolds number limit for the real part given 
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Equation (50) ------- .I 
I 
I 

10-1 I 10 102 1 0 3  1 0 4  105 106 107 

Reynolds number, R* = ou(b-a)/v 

FIGURE 4. Whirl without rotation (with d, = 0). The ‘added mass’ component of the force 
coefficients Re(G - 1) = Refi = Re ( - 1 -f,) as a function of Reynolds number R* and 
non-dimensional radius ratio y = bfu, calculated from (47) (solid curves). Also shown are 
the low and high Reynolds number asymptotes from (53) [or (54)] (dottedcurves) and (50) 
(dashed curves). 

by (50). The high Reynolds number limit for the imaginary part for S 4 1 given 
by ( 5 2 )  is also shown in figure 5; the actual asymptote for the cases in which 6 is 
not so small was obtained from the numerical results. 

In  viewing these results it is clear that virtually all the necessary information 
from a practical point of view is contained within the asymptotic formulae. It is 
only necessary to establish the critical value of R or R* below which the R < 1 
formulae and above which the R 1 formulae should be used. It is clear from the 
figures that this corresponds closely to the point at which the asymptotes cross in 
figure 5; this point, a t  least for small S, is given by R* = 72/S. It is noteworthy in 
this regard that the asymptotic formula (53), which was derived for R < 1, is 
actually valid up to values of R much greater than one. 

7. Whirl with rotation: laminar mean flow 
Let us now turn to the case in which there is a mean flow. For ease of presenta- 

tion, we shall choose to examine the particular case in which this mean flow is 
created by rotation of the inner cylinder with angular frequency Q, while the 
outer cylinder is a t  rest in the mean. In  synchronous whirl, of course, w = Q; in 
analyses of journal-bearing lubrication w = 0. Since there also exist other inter- 
mediate types such as half-frequency whirl and since little added difficulty arises 
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,Y=b/u=l~Ol 1 

Reynolds number, R* = wa(b - a)/v 

FIGURE 5. Whirl without rotation (with d, = 0). The ‘drag’ or ‘damping’ component of 
the force coefficients Im ( G )  = -Imfi = Im fi as a function of R* and y calculated from 
(47) (solid curves). Also shown are low and high Reynolds number asymptotes from (53) 
[or (54)l (dotted curves) and (51) (-.--- , for small y-  1). Actual high R* asymptotes 
Shown by (---). 

we shall proceed with the general case w + 0. Furthermore we shall concentrate 
attention on the force coefficient f, since this is the primary requirement for 
analysis of the rotor dynamics and whirl. 

Examine first the situation when the mean Couette flow in the annulus is both 
stable and laminar. In principle, all that is necessary is to set V ,  = a 0  and V, = 0 
in (18), so that E = b20/ (y2  - 1) and P = - Q(y2-  1); then values for the force 
coeffieientsf, andf, could be obtained as functions of y, the Reynolds number 
R = -ao2/v and !2/w once T*(a) and T*(b) had been computed from the relation 
(39). Unfortunately a major difficulty arises in computing the relation (39) 
in this general case. The calculated answers are extremely sensitive to the 
accuracy with which one can numerically evaluate the integrals and even with 
quadruple precision on an IBM360/75 this could not be done satisfactorily. 
(N.B. The corresponding calculation of the results for whirl without rotation 
from (47) can also be quite sensitive to numerical error.) However, on the basis 
of the experience of the last section, in which all the important trends are con- 
tained within the asymptotic formulae, we shall proceed to examine the limiting 
behaviour in the present case with the objective of delineating the important 
trends. Furthermore, to reduce the complexity we shall make the simplification 
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that the outer cylinder remains rigid with d, = 0;  the structure of the relations 
for the forces is such that the complicated terms T*(a) and T*(b) always contain 
the linear coefficient d,-d,ei+. Thus extension of the results to cases in which 
d, =t= 0 is readily made by observation. 

We shall first investigate the asymptotic behaviour of f, for lower Reynolds 
numbers R, so that ,8 is close to unity and the argument 7 of the Bessel functions 
is small. Using Hankel's expansions of these Bessel functions and evaluating 
terms of order R-l and Ro one finds that 

where xl, . . . , x5 are functions of y only and given by 
x - 1 

x2 = 3(5y4 - y2 + 2) + 2y2(y4 + 1) (lny)/(y2 - I), 
x3 = - (8y4 - yz - 1)/3(y2 - 1) + 2y2(y4+ 2yz - 1) (lny)/(y2 - 

x4 = 2( 1 -y2 )  (1  + 4y2 +y4) (In y )  + 3(y4 - 1) ( y 2  - I ) ,  

x5 = 3(y2- 1) (57 ,  + 1) - (17y4 + 23y2 + 2) (In y )  + 12ys(lny)2/(y2 - 1). 

Notice that this agrees with the result (53) for whirl without rotation when Q is 
set equal to zero. As in that previous case the result (55 )  is dependent upon 
R <  1. 

I n  order to provide some further insight into the results which follow let us 
digress momentarily and consider the particular case of journal-bearing lubrica- 
tion, where w is usually zero. Substituting (55) into the definition (44) of the 
force coefficient and then letting w -+ 0 one obtains 

1 - 3(Y2-1)3,  

4npa2S12id, 
F -  

- R,{(y2 + 1) In y - (7, - I)} 

where the Reynolds number B, = Qa2/v is assumed small as in most lubrication 
analyses. Further, when S = y - 1 is small this becomes 

The first, or dominant, term (provided R, < 82) is precisely the force obtained 
from analyses of journal-bearing lubrication based on the Reynolds equation 
(e.g. Tipei 1962) provided that the bearing displacement d, is small compared 
with the gap width 8 (the most commonly quoted result is actually one half of 
this owing to the assumption of the Giimbel conditions). Note especially that this 
represents a force normal to the line of centres and in the direction of rotation. 
As we shall see in the context of whirl analysis, such a force could have a 
destabilizing effect. 

The second term in (56) represents both a force along the line of centres and the 
first appearance of an inertial term. It is particularly interesting since no 
analogous term appears to be derived in lubrication analysis from the Reynolds 
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equation. Commonly one finds a viscous force in this direction which is O(dq) and 
thus not considered in our analysis. Further there has been recent interest in 
inertial effects in lubrication and Milne (1965) and others have attempted to 
evaluate these effects by modifying the Reynolds equation; but again the pre- 
dicted terms are O(d:). The above result based on the Navier-Stokes equations 
suggests an inertial effect O(d,), which can be significant especially when R, 
approaches a2. Note that this force is negative and represents a centring force. 

To return to the general case represented by (55 )  we observe that when the gap 
width 6 = y - 1 is moderately large the leading term in fl is clearly 

and this represents a dominant viscous drag or damping of the whirl motions of 
the inner cylinder. Assuming y = O(l),  it  is of interest to note that the typical 
damping for synchronous whirl (a z w )  is approximately one half of the value 
of the damping force in the whirl-without-rotation case. Furthermore this 
'damping' becomes negative when the whirl frequency w is less than about one 
half of the rotation frequency !2, and of course eventually becomes the principal 
lubrication force when w 3 0 (see above). In  the context of whirl this suggests the 
possibilities of whirl instabilities at sub-synchronous frequencies (half-frequency 
whirl, etc.). The second term O(Ro)  represents a force in line with the centres 
though it may either be positive (like an added-mass effect) or negative (as in the 
lubrication case) since it is a complicated function of y and !2/w. 

As stipulated the above remarks relate to moderately large gap widths 6. 
When 6 becomes small the behaviour of the result ( 5 5 )  is somewhat more compli- 
cated. Notice first that for 6 < 1 

( y 2 - 1 ) { ( ~ 2 + 1 ) 1 n y - ( ~ 2 - 1 ) } 3 ~ ~ 4 + ~ 6 6 +  ..., 

x1 3 $63, x2 3 - $63, x3 3 6 6 3 .  

~ , - + 1 2 6 ~ + 2 4 6 ~ ,  

The complications arise in the denominator; if R = 0(lf2) (assuming a/w = O( I ) )  
then the first term in the denominator is dominant and the leading real and 
imaainarv parts are 

Thus as in the whirl-without-rotation case [equation (54 ) ]  the damping is 
O(l /63R) ;  but the added mass is much larger here, being O(cY5) instead of O(S-1). 

However there is also another possibility. If 62 < R < 6 then the x, term and 
not the first term in the denominator predominates and the leading real and 
imaginary parts are 

(59) 
16 2w 1286 2w2 w 

fl 3 j j F j  (3 - 1) - i 3R3 (F- a). 
Thus, while the result (58) is appropriate for a modified Reynolds number 
R* = wa(b-a)/v which is less than a3, (59) would seem a better estimate for 
63 < R* < S2. 
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Thus the results for low Reynolds numbers have been obtained in the form of 
the asymptotic formulae (55), (56), (68)  and (59 ) ;  further comment is postponed 
until the high Reynolds number or inviscid limit has been considered. 

8. Whirl with rotation: high Reynolds numbers 
In  the last section, the asymptotic behaviour of the general solution at low 

Reynolds numbers was considered. Useful information can also be obtained in 
the high Reynolds number or inviscid limit and we turn now to that case. In  
practice, of course, the mean flow will become unstable to Taylor vortices above 
a critical Taylor number (Taylor 1935).  There is a question as to whether the 
presence of the additional whirling motions might alter the critical Taylor num- 
ber; recent stability analyses by Hall (1975) for the case of Couette flow with the 
inner cylinder rotating at a fluctuating speed and by DiPrima & Stuart (1  972 a, b, 
1975) for non-coaxial cylinders suggest that the critical Taylor number may only 
be altered by an amount O(d2), relatively insignificant in the present context. 
Furthermore the flow will also become turbulent above some mean flow Reynolds 
number. The present paper will not attempt to analyse the whirl motions and 
forces with such complex mean flows. Rather we shall examine the results of our 
general analysis for a simple mean flow characterized by mean tangential fluid 
velocities V ,  and V, at the surface of the rotor and stator respectively. Then E and 
P are given by definition (18) in terms of these velocities and using high Reynolds 
number expansions similar to those of 0 4 one can evaluate T * ( r )  from (39 )  as 

. * 
E 2 ( w - P ) r ( d 1 - d , e - i ~ )  

(60) 

The first term, written in terms of C* and D* [ (29 )  and (30 ) ] ,  is precisely the result 
one obtains from the inviscid perturbation analysis. The second term contains 
the function H(r )  [equation (32) ]  and thus T * ( r )  has the same non-uniform 
limiting behaviour as that discussed for v; in 0 4. The task of finding the limiting 
behaviour of T*(a) and T*(b) for large but finite R is very involved and will not 
be attempted here. The inviscid result does not contain the second term since 
H ( r )  -+ 0 as R --f cx) for a < r < b .  Hence the inviscid perturbation result for the 
force coefficient fi is 

Notice that (61) agrees with the whirl-without-rotation result for higher R when 
we put V, = V, = 0. Notice also that for small gap widths and d, = 0 

f+Z) (1-3). 

For larger gap widthsf, from (61) can become negative, especially for frequencies 
w which are substantially less than the rotation rate a, to which V, and V, are 
related; under these circumstances the fluid actually imposes a force which tends 
to centre the rotor rather than a decentralizing added-mass force. 
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The resulting forces in the inviscid limit thus depend, naturally, on the charac- 
terization of the mean flow through V, and V,. Taylor’s (1935) Couette flow data 
suggest that an approximate characterization would be V,  w gQa and T{ M +Rb. 
Such values can be used directly in (61) to obtain force coefficients (and added 
mass). Thus 

and for synchronous whirl ( Q  = w )  the added mass MA of the rotor per unit axial 
length is simply 

For small gap widths, 6 = y - 1 < I, 

&IA = rrpa2146, (65 )  

which is precisely the added mass for this case estimated by Fritz (1 970) on the 
basis of an approximate lubrication theory analysis. 

9. Concluding remarks 
In  this paper we have studied the fluid motions and forces which occur when 

annular fluid contained between circular cylinders is set in motion by whirling 
movements of one or both of the cylinders. When there is no mean Couette flow 
caused by additional constant rotation of the cylinders (i.e. whirl without 
rotation) the situation is relatively simple and the forces exerted by the fluid on 
the cylinders can be computed from (45)-(48). Alternatively, as indicated in 
figures 4 and 5,  the asymptotic formulae yield results which are probably 
adequate in any practical situation. 

When there is a mean Couette flow caused by rotation of one or both of the 
cylinders a great variety of circumstances can occur. The results for low Reynolds 
numbers have been obtained in the form of the asymptotic formulae (55) ,  (56) ,  
(58) and (59). The result for inviscid perturbations at high Reynolds numbers has 
also been obtained, in (61), and it was demonstrated that the general solution for 
perturbations on a steady laminar mean flow does asymptote to this as the 
Reynolds number tends to infinity. Though these results for whirl with rotation 
are not as complete as one might wish we shall finally attempt to summarize 
them in graphs similar to figures 4 and 5.  

Confining the illustration to the case of conventional whirl in which w = R, 
and considering a rigid stator, d2 = 0, the various results for the ‘added mass’ 
component Refi and the ‘drag’ component Imfl are displayed in figure 6, where 
&Refl and - 61mfl are plotted against R* for two small gap widths 6. The lower 
right corner of figure 6 is repeated on a larger scale in figure 7, where the results 
are compared with the experimental results of Fritz (1970). Those experimental 
data are for supercritical Taylor numbers and mostly for turbulent mean flow. 
They do seem to indicate a trend towards increasing ‘added mass’ at the lower 
R*, a trend which is consistent with the asymptote of (59). 
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FIUURE 6. Synchronous whirl with rotation (and d, = 0). The asymptotic behaviour of 
6 Re fi and - S I m  fi as functions of Reynolds number R* for non-dimensional gap widths 
6 of 0.04 and 0.1. 
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FIQURE 7. The lower right-hand part of figure 6 on a larger scale with experimental results 
of Fritz (1970): X ,  6 = 0.04; 0, S = 0.062; 0, 6 = 0.1. The extrapolation of (59) is 
beyond its estimated region of validity. 

* 0 1  
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